Growth of Solutions of Higher Order Complex LinearDifferential Equations in anAngular Domain of Unit Disc
نویسنده
چکیده
We study the growth of solutions of higher order complex differential equations in an angular domain of the unit disc instead of the whole unit disc. Some conditions on coefficient functions, which will guarantee all non-trivial solutions of the higher order differential equations have fast growing, are found in this paper. AMS (2010) Mathematics Subject Classification: 34M10, 30D35
منابع مشابه
Growth of Solutions of Linear Differential Equations in the Unit Disc (communicated by Fioralba Cakoni)
In this paper, we investigate the growth of solutions of higher order linear differential equations with analytic coefficients in the unit disc ∆ = {z ∈ C : |z| < 1}. We obtain four results which are similar to those in the complex plane.
متن کاملGrowth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملGrowth and Oscillation of Differential Polynomials in the Unit Disc
In this article, we give sufficiently conditions for the solutions and the differential polynomials generated by second-order differential equations to have the same properties of growth and oscillation. Also answer to the question posed by Cao [6] for the second-order linear differential equations in the unit disc.
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015